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Abstract

Vo consider a class of iterative algorithms for solving systems of

linear equations where the coefficient matrix is nonsymmetric with

positive-definite symmetric part. The algorithms are modelled after the

conjugate gradient method, and are well-suited for large sparse systems.

They do not make use of any associated symmetric problems. Convergence

results and error bounds are presented.
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1. ~Intodion~

The conjugate gradient method (CO), first described by Hestenes and

Stiefel [8], is widely used for approximating the solutions of large sparse

systems of linear equations

Ax-f

where A is an N x N, real, symmetric, positive-definite matrix [1, 3, 5,

12]. CG can be viewed as a direct method that, in the absence of round-off

error, gives the exact solution in at most N steps; or as an iterative

procedure that gives a good approximation to the solution in far fewer

steps (see [131). A feature of the method that makes it particularly

suitable for large sparse systems is that all references to A are in the

form of a matrix-vector product Av, so that the storage requirements are

usually lower than for direct methods. Another attractive feature is that,

unlike most iterative methods, CG does not require any estimation of

parameters. In this paper, we discuss a class of conjugate-Sradient-like

descent methods that can be used to solve nonsymmetric systems of linear

equations. Numerical experiments with these methods are described in [6,

7].

A common technique E8] for solving nonsymmetric problems is to apply

the onjugate gradient method to the normal equations

ATAx = ATf ,

in which the coefficient matrix is symetric and positive-definite. On the

i'th iteration, CO computes an approximate solution that is in some sense

optimal in a Krylov subspace of the form (v,ATAv....,(ATA)i-lv). This

dependence on ATA tends to make the convergence of CG slow (see [1], (3]).

deedneo
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Recently, Concus and Golub (4] and Widlund [181 devised a generalized

conjugate gradient algorithm (GCG) for nonsymmetric systems in which the

coefficient matrix has positive-definite synmetric part. Like the

conjugate gradient method, GCG gives the exact solution in at most N

iterations. However, on each iteration it requires the solution of an

auxiliary system of equations in which the coefficient matrix is the

symmetric part of A. Also, if the nonsymmetric part is relatively large,

then convergence may be slow.

The methods we present depend on a Krylov sequence based on A rather

than ATA, and they do not require the solution of any auxiliary systems.

They do require that the symmetric part of A be positive-definite. In

Section 2, we present four variants that differ in their work and storage

requirements. In Sections 3 and 4, we present convergence results and

error bounds for each of the four variants. In Section 5, we discuss

several alternative formulations.

Notation

The symmetric part of the coefficient matrix A is given by K :=-

T
and the skew-symmetric part by R A-A Thus A M - . The Jordan

canonical form of A is denoted by I :- T-IA T.

For any square matrix 1, let Xn in() denote the eigonvalue of X of

smallest absolute value, and let a (1) denote the eigenvalue of largest

absolute value. The spectral radius IX (M)I of I is denoted by p(I).
max

The set of oigenvalues of 1, also called the spectrum of X, is denoted by

a(l). If I Is nonsingular, then the condition number of X, K(W), is

defined as 11111 2 11x-1112.
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Finally, given a set of vectors (PO..'Pkp' let <PO'...Pk) denote

the space spanned by (p0o..,pki.

2. Descent Methods fori HouzMetzh Skaten

In this section, we present a class of descent methods for solving the

system of linear equations

(2.1) A x - f

where A is a nonsymmetric matrix of order N with positive-definite

syimetric part. We consider four variants, all of which have the following

general form:

(2.2a) Choose z0

(2.2b) Compute r0  f - Ax0

(2.2c) Set PO W rO

FOR i = 0 STEP I UNTIL Convergence DO

(ri, Api)

(2.2d) ai -i (Api#Ap i

(2.2.) x + Wx i + aipi

(2.2f) ri+i = ri - aiApi

(2.2g) Compute Pi+ "

The choice of ai in (2.2d) minimizes I1ril 112 - Ilf-A(xl+api)11 2  as a

function of a, so that the Euclidean norm of the residual decreases at each

stop. The variants differ in the technique used to compute the new

direction vector P
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A good choice for pi4l is one that results in a significant decrease

in the norm of the residual h1ri+l11 2 but does not require a large amount

of work to compute. When A is symmetric and positive-definite, such a

vector can be computed by the simple recurrence relation

(2.3a) Pi+l = ri+l + bipi

where

(Ari+,A p i )(2.3b) b ... (APiApi)

The method defined by (2.2) and (2.3) is equivalent to a variant of CG

known as the conjugate residual method (CR) [16]. The direction vectors

produced are ATA-orthogonal, that is

(2.4) (APi,Apj) = 0 , for i 0 j

and xi+1 minimizes the functional

E(w) :- Ilf - Awl 2

over the affine space x0 + (POO ... Pi> "

If A is nonsymmetric and the algorithm defined by (2.2) and (2.3) is

applied to (2.1), then the orthogonality relation (2.4) does not hold in

general. However, a set of ATA-orthogonal directions can be generated by

using all the previous vectors tPJ) 0 to compute Pi+l:
i

(2.5a) Pi+l = ri+l + 5 b~i) P
j-0

where

bi) (Ar 1 ,Ap )(2.5b) b -

The iterate zi+l generated by (2.2) and (2.5) minimizes E(w) over

x0 + (Pot...,pi> (see Theorem 3.1). We refer to this algorithm as the

generalized conjugate residual method (GCR). In the absence of roundoff
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error, CR lives the exact solution to (2.1) in at most N iterations (see

Corollary 3.2).

The work and storage requirements per iteration of GCR may be

prohibitively high when N is large. Vinsome (17] has proposed a method

called Orthomin that can be viewed as a modification of GCR that is

significantly less expensive per iteration. Instead of making pi+1

ATA-orthogonal to all the preceding direction vectors [p.) one can make
.i

pi+l orthogonal to only the last k (Q 0) vectors (pj)1.i-k+l"

i

(2.6) Pi+l = r, 1 + i b ,
J. i-k+l J P

with ( ik+1 defined as in (2.5b).I Only k direction vectors need be

saved. We refer to this method as Orthomin(k) (see (19]). Both GCR and

Orthomin(k) for k I I are equivalent to the conjugate residual method when

A is symmetric and positive-definite.

Another alternative is to restart GCR periodically: every k+1

iterations, the current iterate Xj(k+l) is taken as the new starting

Suess.2 At most k direction vectors have to be saved, so that the storage

costs are the same as for Orthomin(k). However, the cost per iteration is

lower, since in general fewer than k direction vectors are used to compute

p i+" We refer to this restarted method as GCR(k).

1 The first k directions [p-) are computed by (2.5a), as in GCR.

2 Bere j is a counter for the number of restarts. The jth cycle of GCR(k)

produces the sequence of approximate solutions (z ]J(k+{)
i im(j-1)(k+l)+l"
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For the special case k = 0, Orthomin(k) and GCR(k) are identical, with

(2.7) Pi+1 
= ri+1

This method, which we refer to as the minimum residual method (MR), has

very modest work and storage requirements, and in the symmetric case

resembles the method of steepest descent (see [10]). Because of its

simplicity, we consider it separately from Orthomin(k) and GCR(k).

In Table I, we summarize the work and storage costs (excluding storage

for A) of computing x i for each of the methods. The entries in this table

are determined as follows. For GCR, the storage cost includes space for

the vectors xi, rip Ari" P0 ... pi..-1  and Ap0 ... DAP i_. The

work/iteration Includes two inner-products for a two scalar-vector

products for x i and rip i inner-products for (b ( j-0i_1 i scalar-vector

products for pip i scalar-vector products to compute Api by

i-i

Api = Ari + 2 b~ i-l)Apj
j=0

and one matrix-vector product Ar The total is thus (31+4)N + 1 my. The

entries for Orthomin(k) correspond to the requirements after the kth

iteration, and are the same as those for the kth iteration of GCR. The

work given for GCR(k) is the average over k+1 iterations. The cost of MR

is the same as the cost of Orthomin(O) or GCR(0).

3 Several other implementations are possible. In Orthomin(k) or GCR(k), it
may be cheaper to compute Api by a matrix-vector product for large k. With

a third matrix-vector product, b(i) can be computed as

i j

(ATAr i+l'pj)/ApjpApj), and the previous (Apj) need not be saved.
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I OCR I Orthomin(k) I GCR(k) I M I
--4----- ------ -------

I Work/ I (3i+4)N I (3k+4)N I ((3/2)k+4)N I 4N I
lIterationl + 1 vI + 1m I + 1. I + lm I

I Storage I (2i+3)N I (2k+3)N I (2k+3)N 3 3N I
+

Table W Work per iteration (my denotes a matrix-vector
product) and storage requirements.

3. Cnrgenc gL M 3" C()

In this section, we show that GCR gives the exact solution in at most

N iterations and present error bounds for GCR and GCR(k). We first

establish a set of relations among the vectors generated by GCR. (See [8]

for an analogous result for the conjugate gradient method.)

Theorem 3.1. If (xi) , (ri), and (pl) are the iterates generated by GCR in

solving the linear system (2.1), then the following relations hold:

(3.1a) (APi,Apj) 0 , i j ;

(3.1b) (riApj) = 0 , i ) j ;

(3.10) (ri,Api) = (riAri) ;

(3.1d) (riArj) - 0 , i > j ;

(3.1.) (riAPj) = (r 0 ,Apj) i S j z

(3.1f) (P0s''pi> - <p= Ap0 p ... ,Alp0> = (fop .... ri> >

(3.15) if ri 0, then pi 0 0 ;

(3.lh) I+, minimizes E(w) Jlf-AwiI2 over the affine space

Z0 + <po,...,pi> •

Proof. The directions [p are chosen so that (3.1a) holds.
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Relation (3.1b) is proved by induction on i. It is vacuously true for

i 0. Assume that it holds for i j t. Then, using (2.2f) and taking the

inner product with Apj,

(3.2) (rt+l,Apj) = (rtApj) - at (APt.Apj)

If j < t, then the terms on the right-hand side are zero by the induction

hypothesis and (3.1a). If j = t, then the right-hand side is zero by the

definition of at. Hence (3.1b) holds for i = t+l.

For (3.1€), by preaultiplying (2.5a) by A and taking the inner product

with ri,

i

(ri,Api) = (riAri) + > b (riAp

= (ri.Ari) I

since all the terms in the sum are zero by (3.1b).

To prove (3.1d), we rewrite (2.5a) as

j-i
- (j-1)

rj = pj -t=O t t

Premultiplying by A and taking the inner product with ri (i > J),

j-1

(ri.Arj) = (ri,Apj) - b j - l (r i A p t )

=0

by (3.1b).

Relation (3.1e) is proved by induction on i, for i S J. It is

trivially true when i 0 0. Assume that it holds for i = t J. Using

(3.2),

(rt+l,Apj) = (rt.Apj) - at (APt.Apj)
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(r 0 ,Apj)

by the induction hypothesis and (3.1a).

Relation (3.1f) is proved by induction on I. The three spaces are

identical when i - 0. Assume that they are identical for i S t. Then

(p)tJ0 C<r 0 ,....rt+ 1 >. But by (2.5a),

t

Pt+i rt~1  + - b t) j

so that <P0 ....pt+,> is a subspace of <rO.....rt+l>. By (3.1a), the

•.t+l
vectors (pj4jr0 are linearly independent. Hence, the dimension of

r0 , .... rt+,> is greater than or equal to t+l, which implies that (rjlj= 0

are linearly independent and <P0 .... Pt+1> - <r0 .... rt+l>. Similarly, by

(2.2f),

t

Pt+l rt - atApt + 5 bt) P

By the induction hypothesis, rt, Apt* and ( e <jo PO,AP0 .. ,At+P 0 >, so

that <p0 .... pt+,> is a subspace of (po,Ap09...,A t+lpo>. Again, the two

spaces are equal because the (pJ) are linearly independent.

The proof of (3.1g) depends on the fact that the symmetric part K of A

is positive-definite. If ri 0 0, then by (3.1c),

(ri,Api) = (riAri) = (ri.Mri) > 0

so that (ri,Api) A 05 whence pi 0 0.

For the proof of (3.1h), note that

i

1+1 0 ajpj .

Thus, B(z +1)2 is a quadratic functional in ( * a0 .... ai)T. Indeed,

using (3.1a) to simplify the quadratic term,

' I l l" " . ......
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E(X i+1 - a ,,p j a 2

j=0
j i

(r0 ,r0 ) 2 A a (r0 ,AP ) + J a2(ApJDApj)0! J.0 J o

Thus, E(v) is minimized over x0 + (Po0 .. .. pi when

(r0 pAp.) (rA.

j (ApjApj) (ApjAp.)

by (3.1e).

Q.E.D.

Corollarv 3.2. GCR gives the exact solution to (2.1) in at most N

iterations.

Proof. If ri = 0 for some i j N-1, then Axi = f and the assertion is

proved. If ri 0 0 for all i _ N-1, then pi # 0 for all i I N-1 by (3.1g).

By (3.1a), are linearly independent, so that (Po ....PN-I R

Hence, by (3.1h), xN minimizes the functional E over IN , i.e., xN is the

solution to the system.

Q.E.D.

This result does not give any insight into how close xi  is to the

solution of (2.1) for i ( N. We now derive an error bound for GCR that

proves that OCR converges as an iterative method. Let Pi denote the set of

real polynomials qi of degree less than or equal to i such that qi(O) = 1.

Thoore j. If (ri) is the sequence of residuals generated by GCR, then

(M )2 2

(3.3) 1lr 112 -qmi ilqi(A)ll 2 ll11r 2l <- ma T 11r 011 2

q i p iI ma CJA



Page 12

Hence, OCR converges. If A has a complete set of eigenvectors, then

(3.4) J1riJJ 2 j K(T) *i J1r0Jl 2  ,

where

:- rin max Iq ()I
qi a Pi ). a a(A)

Moreover, if A is normal, then

(3.5) 11 1rill2 j M i 11ro01l 2

Proof. By (3.1f), the residuals (ri) generated by GCR are of the form

ri = qi(A)ro for some qi a Pi. By (3.1h),

(3.6) I1rt 12 - mm 11qt(A)r 0 12  "J qi s P,

The first inequality of (3.3) is an imediate consequence of (3.6). To

prove the second inequality of (3.3), note that for q1 (z) = 1 + az a P1.

min Jiqi(A)II2 .. 1ql(A)112 .j IIq(A)iII
qi a Pi

But

I(A)112  ((IL+oA) x, (I+aA)x)
(112 - maX (xx)

max [1 + 2a (,Ax) + 2 (AzAz)1
(z0 Ix) (xx)-J

Moreover,

(Azx)AA)
(z,z) (zz) 7.a

and, using the positive-definiteness of M,

(zAx) - (x,. (m) > 0
(z'x) (x~z) m

Hence, if a ( 0,
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Ijq1(A)Ijj2 j I + 
2 min(M)u + (j A)G2

This expression is minimized by a , and with this choice of a,
Smax(ATA)

llq(+ll I knin M)a  1/2

)Lmax (AT A)

which concludes the proof of (3.3).

Recall that the Jordan canonical form of A is given by J T-1 A T. To

prove (3.4), we rewrite (3.6) as

llri112 m=in 11T qi(J) T'lroll 2
qi a Pi

<-IITl 2 lIT-1112 1min PIqt(Jl 2 I1r0l12

Since A has a complete set of eigenvectors, J is diagonal, so that

min Ii(l)1I 2  m rin max qi(X) ,
qi a P i qi a Pi X a (A)

whence (3.4) follows.

If A is normal, then T can be chosen to be an orthonormal matrix,

which proves (3.5).

Q.E.D.

Since the symmetric part of A is positive-definite, the spectrum of A

lies in the open right half of the complex plane (see [91). Thus, the

analysis of Nanteuffel [111 shows that min llqi(A)11 2 and Mi approach
qi a Pi

zero as i goes to infinity, which also implies that GCR converges.
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Theorem 3.3 can also be used to establish an error bound for GCR(k).

Corollary . If (rj} is the sequence of residuals generated by GCR(k),

then

(3.7) Ilrj(k+l) l2 min Ilqk+l(A) 112]j lit0 12
k+1 " Pk+1

so that

(3.) 11r l 2  [1 1min()2 112

-X. (ATA)
max

Hence, GCR(k) converges. Moreover, if A has a complete set of

eigenvectors, then

(3.9) Ilrj(k+l) 112 1 (X(T) M k+l)J r0 112

and if A is normal, then

(3.10) 1lr Jlk+l)11 2 1 (Mk+)11r 0lro1l2

Prof. Assertions (3.7), (3.9), and (3.10) follow from Theorem 3.3. To

prove (3.8), let i - jk + t where 0 < t < k. Then

1lrjk+t l2 X [ a (ATA) 1/ ljkll2mnax(AA

by (3.3), and

IlrJkll2 s. [1 min(M)2 ]Jk/2

-max (A A)

by (3.7) and the second inequality of (3.3).

Q.E.D.
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4. Converasne of Orthin

In this section, we present convergence results for Orthomin(k) and an

alternative error bound for GCR and GCR(k). We also present an analysis of

Orthomin in the special case when the symmetric part of A is the identity.

The vectors generated by Orthomin(k) satisfy a set of relations

analogous to (3.1):

Theorem 4.1. The iterates {z (ri), and (pi) generated by Orthomin(k)

satisfy the relations:

(4.1a) (APi.APj) 0, j = i-k,...,i-I , i I k ;

(4.1b) (ri,Apj) 0 0, j = i-k-1 .... i- , i 2 k+l

(4.1c) (riApi) = (ri,Ari) ;

(4.1d) (riAri 1 ) - 0 ;

(4.1e) (ri.APj) = (rj-kAPJ) i = j-k.....j-l, j I k

(4.1f) if ri 0, then Pi # 0

(4.1X) for i > k, xi+ i minimizes E(w) over the affine space

xi-k + (P-k..'.Pi-

Corollary 3.4 with k - 0 implies that Orthomin(O) (MR) converges. We

now prove that Orthomin(k) converges for k > 0. Since the analysis applies

as well to GCR, GCR(k), and MR, we state the results in terms of all four

methods. Recalling that R is the skew-symmetric part of A, we first prove

two preliminary results:

kenM -4.2. The direction vectors (pi) and the residuals (ri} generated by

OCR, Orthomin(k), OC(k), and MR satisfy

(4.2) (Api,Api) J (Ari.Ar l ) .
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Prof. The direction vectors are given by

PiM rj + 2 b~i1)Pj 

where the limits of the sun are defined as in (2.5) for GCR and GCR(k), and

(2.6) for Orthomin(k). Therefore, by the ATA-orthogonality of the [p and

the definition of bi),

(ApiApi) - (Ari.Ari) + 2 1 b (ii) (Ar p + ( (i) 2)

(Ari°Apj)
- (AriAri) - Ajp -

S(Apj#ApJ)

(riAri)

Q.E.D.

L 4.. For any real x I O,

(zA) _____bin (N)

(Ax.Ax) x min(K)max(M) + p(R)2

Prof. Letting y - Ax,

xA (y,Ay) 2 y) A +A
(AxAz) I yy) (y y) min( 2

Thus, it suffices to bound X Ain(A +A -T Consider the identity

(4.4) - [Y(I+Y)-lx] -

which holds for any nonsingular matrices I and Y, provided that 1+Y is

nonsingular. With I - 2A and Y - 2AT, (4.4) leads to

A:-l+AT [(2A)T(4M) -(2A)l -1  [(N- T) 10-(M- )1 -1

2
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= (K +

For any x 0 0,

(x,(M + RTW-lR)x) - (xz/x) + (Rx,JI-Rx) > 0

so that X + RTM-lR is positive-definite. Therefore A +AT is2

positive-definite and

-1 -T 1
A +A _____ _

X max (M + RTJf-iR)

But

XSax +lRT - ax) : [a) +

-1
< ..azO( + max (Rx N ) ( , )

m X..ax(A + m.ax -+t) I IRTI 12

= Xmax (M) + p(R)2/)min(M)

Hence

A-1 A-T
mm 2

kin(A ) kax(M) + p(R)2 /min(M)

Q.E.D.

The following result proves that Orthomin(h) converges and provides

another error bound for GCR, 6*R(k), and MR.

Theoom j.4. If (ri) is the sequence of residuals generated by GCR.

Orthmina(k), 6CR(k), or i. then
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(4.5a) 1 lriII 2  s I - millm 2 I l ro

maxZ ]12AA)~ l1

and

(4.5b) Ilr 111 2  ' in2 /2 01
X~ m(M)Xn)**~ I) + p(R)

ErnnL. By (2.2f),

Ilr 1 II (jri) - 2ai(ri.Api) + al(Api,Api)

- I(rifIp - (rje Ap1 )

112 -122i12 1 2 r~i (ri'Api) U Vpi

INi112 (iApi)

lir 1 2 (riApn) (rnApn)

(rnAr) (rAi)

by (3.101/(4.10) and (4.2). Dut

(ri&Azi)

and

Tjl i r - (tj. ATAtp i I)' a(AA)

so that

2

ax
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which proves (4.5a). By (4.3),

(rioAri) (

so that

1+1I ~I 2__ ... 2 0in2min(M);Lmax(M/) + P(R)2 ] /  rl1

which proves (4.5b).

Q.E.D.

In general, the two error bounds given in Theorem 4.4 are not

comparable. They are equal when N u I and (4.5b) is stronger when R = 0.

When R - 0, the constant L mn( ) 1/2 in (4.5b) resembles the
~max

constant [ m(A)+ (A)J  in the error bound for the steepest descent
Xmax ()Xmmi A

method (see [10]). Thus. we believe that the bounds in Theorem 4.4 are not

strict for k 2 1.

If A - I R with R skew-symmetric, then Orthomin(l) is equivalent to

GCR, and we can improve the error bounds of Theorem 3.3 and Theorem 4.4.

4.5j. ~If A - I - R with R skew-symmetric, then Orthomin(l) is

equivalent to GC. The residuals (ri) generated by Orthomin(l) satisfy

(4.) 1rt11 2-_(R (I+ +9=() t IIVo1l2 ,
6(ltl 2 +p()2)2t + p(R)2t

for eve& t.
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Proof. To prove that Orthomin(l) is equivalent to G( , it suffices to show

that b(i) = 0 in (2.5b) for j j i-l. But the numerator is

(Ari+l,Apj) = (ri+ 1 ,Ap) - (Rr+,Apj) •

By (3.1b),

(ri+iApj) = - (ri+ 1 ,lpj) 0

Hence, by the skew-symetry of R,

(Ari+l,Ap1  (r+ 1,Apj) + (ri+IRApj) = (ri+A2pj)

But by 12.2f),

,2p 1Bu b ( .2 ),(ri+11 A 2 = (ri+l,A(r -rj+l)) = 0

for j I i-1, by (3.1d).

For (4.6), observe that A - I - R is a normal matrix, so that (3.5)

holds. We prove (4.6) by bounding Mt . Widlund [181 has shown that

(4.7) M t .L [cosh(t log( (I- (1 + )))]-1

for even t. Let A1 - Py(I + A+iT)). Using

1cosh(z) (eZ + * -Z)

(4.7) reduces to
t2 2

,it t + -t A +1

from which (4.6) follows.

Q.E.D.
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5. Other hnuauku

In this section, we discuss several methods that are mathematically

equivalent to GCR.

We derived GCR from CR by replacing the short recurrence for direction

vectors (2.3) with (2.5), which produces a set of A TA-orthogonal vectors

when A is nonsymetric. Young and Yea [19] present an alternative,

Lanczoa-like method for computing A TA-orthogonal direction vectors:

i

(5.la) Pi+j = Api + _ b p;

where 
J.0

M) -(A
2 p',Ap;)(5.1b) b i ) -  pA) " j i

.1 J

If [pi) is the set of direction vectors generated by GCR and p =P0 then

p =cpj for some scalar ci (see (191). Hence, this procedure can be used

to compute directions in place of (2.5). The resulting algorithm is

equivalent to GCR, but does not require the syimetric part of A to be

positive-definite.

Axelsson (2] takes a somewhat different approach. Let 10 , r0 , and P0

be as in (2.2). Then one iteration of Axelsson's method is given by:

i

(5.2s) i+1  = + 2 ajiP+
J-0

(5.2b) rj1 af - Ax

(Ari+i,Api)
(5.20) b i  AtAt

(S*o) i (Api.Api)

(5.2d) P1+i ri+, + bipi '
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where the scalars (a(i) ) are computed so that 1r I is minimized.
j J-0 i+l 2

This requires the solution of a symetric system of equations of order i+l

B A(i) = So

where Bat Ap a,Apt) and as - (riAps). Thus, the solution update is more

complicated than in GCR, but the computation of a set of linearly

independent direction vectors is simpler. Although the direction vectors

are not all ATA-orthogonal, (5.2d) and the choice of (a (i-l) i force

l1rihhi 2 min IIqt(A)r0hI2
qi a P,

to be satisfied, so that this method is equivalent to GCR.

If these methods are restarted every k+l steps, then the resulting

methods are equivalent to GCR(k). Both methods can also be modified to

produce methods analogous to Orthomin(k): only the k previous vectors

(pj ik+1 are used in (5.la), and only the k vectors (Pj)j i-k+l are used

in (5.2a), with (a"i) computed to minimize J1rl+111 2 .  However,

both these truncated methods may fail to converge in some cases. (We have

encountered situations in which such failure occurs for the truncated

version of (5.1); see [2] for a discussion of the truncated version of

(5.2).) For this reason, we favor the formulation of OCR given in

Section 2.

In discussing the methods of this paper, we have emphasized their

variational property, i.e., that z is such that unri 2 is minimized over

some subspace. Saad [14, 15] has developed a class of CG-like methods for

nonsymmetric problems by restricting his attention to the properties of

projeotion and orthogonality. Lot (v ) =0  and (w ) i  be two sets of

linearly independent vectors, and let Ki : (vo0....vi) and
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Li := v0 ,...,wi). Saad defines an oblique projection method as one that

computes an approximate solution xi+a a x0 + Ki whose residual ri+I is

orthogonal to Li. For example, GCR is such a method with Ki = >

and Li = Apo.....APi>.

Sad presents several oblique projection methods in [14, 15]. One of

these is in some sense an alternative formulation of GCR. Let

0= T-0 , and let (v )tI be defined by
vO lr0 12' t t=

t

(5.3) ht+l,tVt+i = Avt -j- h jtvj

h t

where (h I are chosen so that

(Vtt+1,1Av 0 , t

and ht+i* t is chosen so that liv t+11 = 1. Let A(M)be the solution of

the system of equations

(5.4) HA (i) - lir0112 (1,0 ....0)T

where Hi is the upper-Hessenberg matrix whose nonzero elements are the hit

defined above, and let

(5.5) xi+1 x 0 + a aCi)

iWi
By construction, xi+I a x0 + Ki, where Ki :- <v0"."vi ={v0*Av0.... Aiv0 >.

It can be shown that v i+l is proportional to ri+I , so that r i+l is

orthogonal to Li :- <Av0 ,...,Avi). It can also be shown that xi+1

minimizes I1ri+u11 2  over x0 + <v0 ,Av0 ,...,A iv0 , so that xi+l is equal to

the (i+1)'et iterate generated by MMR.
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Note that the approximate solution xi+ I is computed only after [v I),
i+1 t t-0

have been computed, so that this method lends itself naturally to

restarting. Several other heuristics can be used to cut expenses

(see [14, 151). In particular, the computation of the (vt) can be

truncated, so that at most k vectors are used to compute vt+l:

t

(5.6) ht+ltvt+1 = Avt - h it v .

j max(O,t-k+l)

This procedure can then be integrated into an algorithm with restarts every

i+1 steps, for i > k. After (v have been computed by (5.6). x ist t-0  i+i

computed as in (5.4) and (5.5), and the algorithm is restarted. The effect

of truncating the computation of the [v t  is to make Hi a banded

upper-Ressenberg matrix with bandwidth k. We do not know when this method

converges.

U'
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